Vector space exercise

We have a document database of 5 documents with the following content:

Document 1(d1):"Information Retrieval Systems"

Document 2(d2):"Information Storage"

Document 3(d3):"Digital Speech Synthesis Systems"

Document 4(**d4**):"Speech Filtering" Document 5(**d5**):"Speech Retrieval"

We want to retrieve the documents in that database that better match with my information need. For that, the query is : **Information Speech Filtering**, **Speech Retrieval**.

Steps

- 1. Frequency matrix
- 2. Inverse document frequency:
- 3. Query vector
- 4. Similarity Function

1.-Frequency matrix: calculate the frequency of every term in each document

	Digital	Filtering	Information	Retrieval	Speech	Storage	Synthesis	Systems
d1								
d2								
d3	1	0	0	0	1	0	1	1
d4	0	1	0	0	1	0	0	0
d5	0	0	0	1	1	0	0	0
sum	1	1		2		1	1	2

2.-Inverse document frequency= log(number of documents/ frequency of the terms of all documents). IDF is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus. It helps to adjust for the fact that some words appear more frequently in general but there are not relevant

<u>TERM</u>	DOC-FREQUENCY	<u>IDF</u>
Digital	1	$\log(5/1) = 0.699$
Filtering	1	$\log(5/1) = 0.699$
Information		log()=
Retrieval	2	$\log(5/2) = 0.398$
Speech		log()=
Storage	1	$\log(5/1) = 0.699$
Synthesis	1	$\log(5/1) = 0.699$
Systems		log(/) =

Calculate the matrix tf.idf =)multiply the frequency x the IDF of the term) and
calculate the length of the vectors (last column)

Length of d1=sqrt(_____^2+____^2)= Length of d2=sqrt(____^2+____^2)=

Length of d3=sqrt(0.699^2+0.222^2+0.699^2+0.398^2)=1.088

Length of d4=sqrt(0.699^2+0.222^2)=0.733

Length of d5=sqrt(0.398^2+0.222^2)=0.456

	Digital	Filtering	Information	Retrieval	Speech	Storage	Synthesis	Systems	Length
d1									
d2									
d3	1x0.699	0	0	0	1x0.222	0	1x0.699	0.398	1.088
d4	0	0.699	0	0	0.222	0	0	0	0.733
d5	0	0	0	0.398	0.222	0	0	0	0.456

4.-Query and query vector

The Query is: Information Speech Filtering, Speech Retrieval

The maximum frequency of a term is ("Speech")=2

Query vector: frequency of the term/ max frequency of every term) X idf of the term

Length= sqrt (____^2+____^2+____^2)=_____

	Digital	Filtering	Information	Retrieval	Speech	Storage	Synthesis	Systems	Length
((1/2)*0.699=0.349							

7.-Similarity Function: multiply the vector of the query by the vector of each document divided by the multiplication of its lengths

$$similarity = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

the bigger the cosine the more similar de doc and the query solution: the order of presentation is
